第一種情形: 檢視圖片 tan a = √3/(k-1),tan b = [(3√3)/2]/[k-(3/2)] = 3√3/(2k-3) tan (a+b) = tan 30度 (tan a + tan b)/[1-(tan a*tan b)] = 1/√3 [√3/(k-1) + 3√3/(2k-3)]/{1-[√3/(k-1)][3√3/(2k-3)]} = 1/√3 上式左邊分子分母同乘以(k-1)(2k-3) [√3(2k-3)+3√3(k-1)]/[(k-1)(2k-3)-9] = 1/√3 交叉相乘得 3(2k-3)+9(k-1) = (k-1)(2k-3)-9 乘開整理得 k^2 - 10k + 6 = 0 k = 5±√19 (負不合)
第二種情形:
檢視圖片 tan a = [√3(k-3)/2]/[k-(k-3)/2] = √3(k-3)/(k+3) tan b = [√3(k-2)/2]/[k-(k-2)/2] = √3(k-2)/(k+2) tan (a+b) = tan 30度 (tan a + tan b)/[1-(tan a*tan b)] = 1/√3 [√3(k-3)/(k+3) + √3(k-2)/(k+2)]/{1-[√3(k-3)/(k+3)][√3(k-2)/(k+2)]} = 1/√3 上式左邊分子分母同乘以(k+3)(k+2) [√3(k-3)(k+2)+√3(k-2)(k+3)]/[(k+3)(k+2)-3(k-3)(k-2)] = 1/√3 交叉相乘得 3(k-3)(k+2)+3(k-2)(k+3) = (k+3)(k+2)-3(k-3)(k-2) 乘開整理得 2k^2 - 5k - 6 = 0 k = (5±√73)/4 (負不合)
所以正△ABC邊長為 5+√19 或 (5+√73)/4
This entry passed through the Full-Text RSS service — if this is your content and you're reading it on someone else's site, please read the FAQ at fivefilters.org/content-only/faq.php#publishers. Five Filters recommends: 'You Say What You Like, Because They Like What You Say' - http://www.medialens.org/index.php/alerts/alert-archive/alerts-2013/731-you-say-what-you-like-because-they-like-what-you-say.html
You are receiving this email because you subscribed to this feed at blogtrottr.com.
留言列表