close
Blogtrottr
Yahoo!奇摩知識+ - 分類問答 - 科學常識 - 已解決
Yahoo!奇摩知識+ - 分類問答 - 科學常識 - 已解決 
CloudMailin

Incoming Email for your web app. Get started in minutes and scale effortlessly when you need it.
From our sponsors
△ABC 為正三角形 , D,E兩點在BC 邊上,BD=2,
Aug 7th 2013, 15:22

第一種情形:
 檢視圖片 
tan a = √3/(k-1),tan b = [(3√3)/2]/[k-(3/2)] = 3√3/(2k-3)
tan (a+b) = tan 30度
(tan a + tan b)/[1-(tan a*tan b)] = 1/√3
[√3/(k-1) + 3√3/(2k-3)]/{1-[√3/(k-1)][3√3/(2k-3)]} = 1/√3
上式左邊分子分母同乘以(k-1)(2k-3)
[√3(2k-3)+3√3(k-1)]/[(k-1)(2k-3)-9] = 1/√3
交叉相乘得
3(2k-3)+9(k-1) = (k-1)(2k-3)-9
乘開整理得
k^2 - 10k + 6 = 0
k = 5±√19 (負不合)

第二種情形:

檢視圖片 
tan a = [√3(k-3)/2]/[k-(k-3)/2] = √3(k-3)/(k+3)
tan b = [√3(k-2)/2]/[k-(k-2)/2] = √3(k-2)/(k+2)
tan (a+b) = tan 30度
(tan a + tan b)/[1-(tan a*tan b)] = 1/√3
[√3(k-3)/(k+3) + √3(k-2)/(k+2)]/{1-[√3(k-3)/(k+3)][√3(k-2)/(k+2)]} = 1/√3
上式左邊分子分母同乘以(k+3)(k+2)
[√3(k-3)(k+2)+√3(k-2)(k+3)]/[(k+3)(k+2)-3(k-3)(k-2)] = 1/√3
交叉相乘得
3(k-3)(k+2)+3(k-2)(k+3) = (k+3)(k+2)-3(k-3)(k-2)
乘開整理得
2k^2 - 5k - 6 = 0
k = (5±√73)/4 (負不合)

所以正△ABC邊長為 5+√19 或 (5+√73)/4 

This entry passed through the Full-Text RSS service — if this is your content and you're reading it on someone else's site, please read the FAQ at fivefilters.org/content-only/faq.php#publishers. Five Filters recommends: 'You Say What You Like, Because They Like What You Say' - http://www.medialens.org/index.php/alerts/alert-archive/alerts-2013/731-you-say-what-you-like-because-they-like-what-you-say.html

You are receiving this email because you subscribed to this feed at blogtrottr.com.

If you no longer wish to receive these emails, you can unsubscribe from this feed, or manage all your subscriptions
arrow
arrow
    全站熱搜
    創作者介紹
    創作者 omoss 的頭像
    omoss

    中視聶小倩線上看 , 聶小倩線上看第二集 , 聶小倩 中視 , 聶小倩電視劇 , 聶小倩

    omoss 發表在 痞客邦 留言(0) 人氣()